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A possible classification of cellular solids can be made based on the dimension into
honeycombs and foams. In numerical simulations 2D models that are employed primarily
to study honeycombs can also be used to model open-cell foams. Thereby, a loss of
information regarding the 3D connectivity of the microstructure is involved. To answer the
question how the missing third dimension in 2D models affects the overall properties,
spatially periodic 2D and 3D model foams are adopted. From the point of homogenisation,
a strain-energy based scheme is used for adequately determining the effective mechanical
properties at large strains. The key idea behind this method is to use directly the
equivalence condition between the meso-strain energy and the macro-strain energy. In a
first step a representative volume element with the given microstructure and a
corresponding volume element containing the effective medium are subjected to
equivalent states of deformation. Subsequently, the macroscopic stress-strain relationships
are determined by volume-averaging of the stored strain energy. The results of some
fundamental loading cases indicate that both model foams represent the deformation
characteristics of hyperelastic solid foams like localized bending and elastic buckling. In
addition, the development of anisotropy due to microstructural changes at large strains can
be traced with both model foams. Nevertheless, the different cell morphology affects the
stress-strain curves in a quantitative manner.
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Cellular solids like polymeric or metallic foams are
advanced materials whose microstructure can be tai-
lored by appropriate control of the production process
to a certain degree. In addition, the high porosity of
the microstructure makes these materials suitable for
lightweight constructions. Besides their application for
structural components, open-celled foams can be also
used as heat exchangers or catalytic converters. Owing
to their pore structure, these materials differ signifi-
cantly from conventional materials, especially in com-
pression loading.

Apart from the properties of the bulk material the
foam is made of, the cellular microstructure has to
been taken into account for if we want to predict its
overall properties. The microstructural description of
a foam comprises mainly information about the cell
morphology and cell connectivity.

The first contributions to foam mechanics were made
by Gent and Thomas [1] as well as by Patel and
Finnie [2]. Closed-form analytically performed studies
by Gibson and Ashby [3] on simple micromechanical
models yield scaling rules for the effective Young’s
modulus and Poisson’s ratio. The textbook of Gibson
and Ashby [3] gives a good review on foam mechanics.

Warren and Kraynik [4] examined a regular honey-
comb microstructure in the small strain regime. Ow-
ing to its six-fold symmetry, the hexagonal honey-
comb model exhibits isotropic mechanical behaviour
[5]. From the point of modeling, the honeycomb
microstructure is suitable for physical reasons since
the hexagons are space-filling polygons partitioning a
plane in equal cells with minimal material input.

The three-dimensional counterpart of the hexagon
can be derived from the Kelvin foam. The Kelvin foam
which consists originally of closed cells with slightly
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curved cell walls can be approximated by a bcc-lattice
of tetrakaidecahedral cells. In this study, the three-
dimensional model is based on Kelvin’s structure but
the tetrakaidecahedral cells do not have closed faces in
order to model open-cell foams. Hereby, a tetrakaideca-
hedron is a 14-sided polyhedron, containing six squares
and eight hexagons. Warren and Kraynik [6] were the
first determining the linear elastic properties of this
microstructure. Zhu and his colleagues [7] derived an-
alytic formulae for the overall linear elastic properties
of the tetrakaidecahedron. In the comparative study of
Grenestedt [8] different cellular periodic models were
evaluated in the small strain regime.

One of the early papers on the non-linear behaviour
of the regular Kelvin foam was by Dementjew and
Tarakanov [9], whereby they only considered cell wall
bending. Zhu et al. [10] examined the Kelvin foam un-
der high-strain compression. The model used by War-
ren and Kraynik consists of a tetrahedral element. Wang
and Cuitiño [11] analyzed the deformation evolution
of a similar model at the mesoscopical level. Other
modeling approaches are based on Voronoi tesselation
(Zhu et al. [12]). However, by this technique irregular
foam models are preferrably generated.

Aim of the present study is to examine the influ-
ence of the missing third dimension in 2D models on
the overall mechanical behaviour of hyperelastic solid
foams at large strains. Therefore, we focus on ideal-
ized periodic model foams although real foams exhibit
a complex microstructural geometry. For the numerical
homgenisation a strain energy based scheme (see [13,
14]) is adopted. This concept assumes that a represen-
tative volume element of the given microstructure and a
volume element of the effective medium are mechani-
cally equivalent if both volume elements hold the same
amount of strain energy for the same effective macro-
scopic deformation. The finite deformations of both
volume elements on the macroscopic level are linked
via the volume average of the deformation gradient.
Finally, for several fundamental loading situations the
macroscopic stress-strain curves are compared and the
relation between microstructural changes and macro-
scopic behaviour is demonstrated.

2. Homogenisation scheme
The process of homogenisation is depicted by means of
Fig. 1. A hyperelastic cellular body in the domain � is
loaded with surface tractions ti = σi j ni and prescribed
displacements ui . We want to replace the complex mi-

Figure 1 Homogenisation process of a periodic solid.

crostructure in the vicinity of a material point Xi by
a macroscopically equivalent medium which is ideally
homogeneous. Provided that the cellular solid behaves
statistically homogeneous at the macro level, the mate-
rial point can be chosen arbitrarily and the space around
this point is denoted as a representative volume ele-
ment (RVE). Because of the periodic composition of
the microstructures, considered in this study, the rep-
resentative volume element is given by the smallest
repeating unit of the infinite lattice. From the available
homogenisation schemes proposed in literature for de-
termining the overall mechanical properties of cellular
and porous material, a strain energy based concept is
adopted. The main advantage of this homogenisation
procedure is that large deformation can be incorpo-
rated in a natural manner and for hyperelastic foams
the overall stress- strain relationship corresponds to the
constitutive equation on the meso level.

The key idea behind the proposed homogenisation
framework can be described as follows: We consider
a representative volume element containing the given
cellular microstructure and a identical RVE filled with
an ideally homogeneous effective medium with un-
known properties. If both volume elements are sub-
jected to macroscopically equivalent states of deforma-
tion, the same amount of strain energy has to be stored
in both RVE for equivalent mechanical behaviour on
the maco level. The condition of equal states of defor-
mation can be expressed by

F̄i j = 1

V RVE

∫
�RVE

Fi j dV
!= 1

V RVE

∫
�RVE

F∗
i j dV

= F̄∗
i j (1)

where Fi j denotes the components of the deformation
gradient tensor. Furthermore, quantities that are marked
by an asterisk refer to the effective medium.

The assumption of equivalent strain energies on the
meso and macro level is given by

w̄ = 1

V RVE

∫
�RVE

w dV
!= 1

V RVE

∫
�RVE

w∗
i j dV

= w̄∗
i j . (2)

Therein, w and w∗ denote the strain energy densities
in RVE and RVE∗, respectively. In addition to the de-
formation gradient in Equation 1, the Green-Lagrange
strain tensor is introduced as strain measure by

γ̄i j = 1

2
(Fki Fkj − δi j ) (3)

where δi j is the Kronecker delta tensor.
Since large elastic deformations of the model foams

are taken into account, a hyperelastic material model
is assumed on the meso level. By differentiation of the
strain energy with respect to the Green-Lagrange strain
tensor, the components of the second Piola-Kirchhoff
stress tensor are obtained:

τ̄i j = ∂w̄

∂γ̄i j
. (4)
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Figure 2 Hexagonal lattice and RVE consisting of 2 × 2basic cells.

As an alternative stress measure, Cauchy stresses that
refer to the current configuration of the RVE are in-
troduced. From the 2nd Piola Kirchhoff stresses, the
Cauchy stress tensor can be evaluated by

σ̄i j = 1

J̄
F̄ik F̄jl τ̄kl, J̄ = det F̄ (5)

where J̄ is the determinant of the deformation gradient.

3. Mesoscopic modeling
3.1. Representative volume elements
Within the scope of a micromechanical approach, the
concept of representative volume elements (RVE) is
used in the present study. For both type of model foams
the RVE has the shape of a parallelepiped spanned by
vectors a, b and c. Due to the periodicity of the mi-
crostructures, a RVE can be made up of several basic
cells. Hereby the term ’basic cell’ denotes the small-
est possible repeating unit. For loading cases without
instability phenomena, one basic cell is sufficient to
determine the overall stress-strain curves, otherwise
n = 2 or more basic cells in each translation direction
are required to capture the microstructure’s deforma-
tion.

In Fig. 2 it is shown how a RVE for the 2D model
can be generated. The vectors a and b span the RVE in
the x1, x2-plane. A basic cell is composed of three cell
walls meeting at a angle of 120◦. The microgeometry
of the 2D model foam is discretized using 4-node shell
elements. In order to apply a plane strain state, all nodes
are fixed in x3-direction.

In Fig. 3a the 3D model foam consisting of 2×2×2
basic cells is presented. With respect to the (x1, x2, x3)
coordinate system, the nodal points are given by
P (d, d, d) , Q (−d, d, d) and R (0, 2d, 0), whereas in
Fig. 3b the basic cell of the 3D model foam is shown.
Again, a parallelepiped is cut from the bcc-lattice of
tetrakaidecahedral cells. The basic cell within the 3D-
RVE comprises 12 cell struts and 12 cell vertices.

The struts of the microstructure are discretized using
Timoshenko beam elements. The Plateau border cross-
section observed in real polymeric foams is approxi-
mated with an equilateral triangle.

Because of the large elastic deformation that rubber-
like materials can expericence, a hyperelastic material
model of Mooney-Rivlin form is assumed on the cell
wall level.

3.2. Boundary conditions and loading
It is assumed that the deformation of the RVE exhibits
periodicity. Thus, two opposing planes �+and �− of
the boundary with outward normals n+ = n− are sup-
posed to deform in a compatible manner. Since the
finite element method is used, discrete periodicity con-
straints are imposed for the surface nodes. To give an
example, the periodicity conditions for the nodes X+
and X− in Fig. 2 read

u(+)
i − u(P)

i = u(−)
i − u(1)

i

ϕ
(+)
i = ϕ

(−)
i

, i = 1, 2, 3 (6)

with u(·)
i denoting the displacements of the correspond-

ing nodes and ϕ
(·)
i the respective rotation angles.

Applying periodicity constraints, the volume average
of the deformation gradient (see Equation 1) can be
expressed in terms of the displacements u(P)

i , u(Q)
i , and

u(R)
i

F̄i j = 1

V RVE

{
u(P)

i b × c · e j + u(Q)
i c × a · e j

+ u(R)
i a × b · e j

} + δi j (7)

where e j denotes the basic unit vector in x j -direction.
Hereby, the transformation of the volume integral to a
surface integral yields:

F̄i j = 1

V RVE

∫

∂�RVE

ui n j + δi j . (8)

For a prescribed macroscopic strain state the displace-
ments u(P)

i , u(Q)
i , and u(R)

i of the master nodes are de-
termined numerically by means of the Equations 3 and
7 in terms of the components γ̄i j of the macroscopic
Green-Lagrange strain tensor. In addition, node 1 is
fixed to suppress rigid body translations of the RVE

Figure 3 (a) Bcc-lattice of tetrakaidecahedral cells. (b) Basic cell.
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Figure 4 Effective stress-strain curves for uni- and multi-axial tensile deformation.

and a symmetric deformation gradient is assumed in
order to eliminate rigid body rotations.

4. Numerical results and discussion
4.1. Uni- and multiaxial tensile deformation
In a first example the foam behaviour for uni- and
multiaxial tensile deformations is compared. To this
end, four loading cases are considered: uniaxial ten-
sile deformation in x1- and x2-direction, respectively,
biaxial tensile deformation and triaxial tensile defor-
mation. In case of the uniaxial tensile deformation in
x1-direction, the prescribed homogeneous strain field
in the RVE is governed by the Green-Lagrange tensor
G = γ̄11e1 ⊗ e1 with 0 ≤ γ̄11 ≤ 2. In Fig.4 the result-
ing stress-strain curves are presented. Regarding the
uniaxial tensile deformation in x1-direction as shown
in Fig. 4(a), equal normal stresses in the 2D model
foam develop in the small strain regime. However, with
increasing macroscopic strain, anisotropy is induced
in the initially isotropic 2D-microstructure due to the
alignment of the struts in the loading direction. This
effect is reflected by the different material’s response
normal to the loading direction (compare (a) with (b)).
Whereas the normal stress components in the macro-
scopic loading direction are approximately equal, in-
dependently whether the foam is elongated in the x1-

direction or in the x2-direction, the out of plane stresses
perpendicular to the loading direction are significantly
different. A similar effect can also be observed for
the 3D model foam according to Fig. 4(a) and (b),
respectively.

As a next example, both model foams are com-
pared for biaxial loading. Since the cell walls of the
2D model foam are only elongated, no deformation in-
duced anisotropy occurs in this case. From the point of
view of the meso-deformation mechanisms, the biax-
ial loading of the 2D model foam is rather comparable
with the triaxial tensile loading of the Kelvin foam. As
a result, a hydrostatic state of stress is induced in the
3D model foam (see Fig. 4(d)).

As a conclusion of the tensile loading simulations,
it is found that the 3D-model appears to be compar-
atively softer within the small strain domain than the
2D model foam. However, the stress-strain curves of
the 2D model are qualitatively similar due to the same
meso-deformation mechanisms like localized bending
and cell wall stretching. Distinct differences occur only
in the stress level.

4.2. Shear deformation
Another basic loading case is the pure macroscopic
shear deformation G = γ̄12e1 ⊗ e2 + γ̄21e2 ⊗ e1 in
the x1, x2-plane with γ̄12 = γ̄21. In Fig. 5 the effective

Figure 5 Effective stress-strain behavior under shear deformation for (a) the 2D model foam and (b) the 3D model foam.
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Figure 6 Morphology change of the 2-D and 3-D model foam under pure shear deformation.

stress-strain curves for both model foams are plotted.
On the one hand, there is a distinct difference between
the foam behaviour at small and large effective strains.
In the small strain regime only shear stresses develop
in the 2D and 3D-microstructure, whereas at large ef-
fective strains relatively high effective normal stresses
are induced additionally due to stretching of the cells
on the meso scale. On the other hand, the material
responses of both microstructures are qualitatively
similar.

In Fig. 6 the morphology change of both microstruc-
tures related to the stress strain curves can be ob-
served. At macroscopic strains γ̄12 ≈ ±0.3, the nor-
mal stress-strain curve for τ̄11 shows a local maximum
since the struts loaded in compression start to buckle.
Also, both microstructures again exhibit deformation
induced anisotropy since the symmetry of both mi-
crostructures gets lost and the cells are reorientated
according to the shear loading. Besides the 2nd Piola-
Kirchhoff stresses, the corresponding Cauchy stress are
plotted (see Equation 5).

4.3. Uni- and multiaxial compressive
deformation

The response of both microstructures subjected to uni-
axial compressive deformation is shown in Fig. 7. Due
to the fact that the critical buckling loads of the 3-
D model are about 10times higher than the buckling
loads of the 2-D model foam, the corresponding stress-
strain curves develop at different stress levels. Nev-
ertheless, the stress-strains can be regarded as typi-
cal for open-cell foams. The stress-strain curve con-
sists of a small strain regime where the stress-strain
curve is nearly linear, followed by a stress plateau

and a densification regime. Note that no cell wall con-
tact has been taken into account. The steep increase
of the stress is due to the employed stress and strain
measure. Comparable with the uniaxial tensile defor-
mation, a deformation induced anisotropy effect can
also be observed at high compressive strains. After bi-
furcation decreasing normal stresses develop perpen-
dicular to the loading direction. In addition, the cubic
symmetry of the undeformed 3-D microstructure van-
ishes. With regard to the meso-deformations, the 3-D
model foam shows localized bending and buckling ef-
fects which are similar to the 2-D material behaviour.
Thus, the resulting effective stress-strain curves of
both microstructures agree closely in a qualitative
manner.

In Fig. 8(a) the biaxial stress-strain response is shown
which differs from the uniaxial stress-strain curves in
the slope of the stress-plateau. While equal normal sec-
ond Piola-Kirchhoff stresses τ̄11 and τ̄22 develop in the
2-D microstructure, only the normal stresses in x1- and
x2-direction coincide in the 3D-case. The 3-D model
foam exhibits a softening effect in the stress component
τ̄33 after bifurcation.

A completely different stress-strain behaviour is ob-
served for the 3-D model foam subject to triaxial com-
pressive deformation (see Fig. 8b). First, bifurcation
buckling occurs followed by snap-through buckling.
With onset of bifurcation the equivalence of the nor-
mal stresses are preserved up to effective strains of
γ̄11 > −0.1. In contrast to bifurcation buckling, the
stress-strain curve −τ̄11 has a local extremum and then
exhibits a negative stiffness for snap-through buckling.
Consequently, the model foam has to release strain en-
ergy in order to achieve static equilibrium resulting in
instability failure of the microstructure.

Figure 7 Post-buckling behavior of the 3-D model foam under uniaxial compression.
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Figure 8 Post-buckling behavior of the 3-D model foam under (a) biaxial and (b) triaxial compression.

5. Conclusions
The main goal of this contribution is to study the ef-
fect of different modeling dimensions on the overall
mechanical properties of open-cell foams. To this end,
highly idealized models consisting of a hexagonal mi-
crostructure and the Kelvin-foam are adopted. The ma-
terial response to basic loading cases is compared using
a strain energy based homogenisation scheme. The ba-
sic assumption within this homogenization approach
is to derive the effective stress-strain relationships by
volume averaging of the elastic strain energy.

From the numerical examples for uniaxial tensile de-
formation we can conclude that both foam models have
a similar qualitative stress-strain behaviour. Therefore,
neglecting the spatial morphology results only in differ-
ent stress levels of the macroscopic stress-strain curves
since on the meso scale the same deformation mecha-
nism are observed. In addition, both model foams show
the effect of deformation induced anisotropy which is
caused by the morphology change at large macroscopic
strains. In case of uniaxial compressive loading, a typi-
cal stress-strain curve for foamed materials is obtained.
However, it is emphasized that the obtained results
cannot be generalized simply to real honeycombs and
foams because of the idealized geometry and the par-
ticular assumptions. The existing distinctions in their
overall behaviour are rather supposed to emerge more
pronounced.
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